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Probability

- recap

- we have the two problems E and/or H concerning a real-world object Ψ
and our goal is to provide answers (inferences) to these problems based
upon the evidence in the observed data x

- towards this end we have introduced the ingredients: the statistical
model ffθ : θ 2 Θg and the prior π on θ which leads to the joint
probability distribution (θ, x) � π(θ)fθ(x)

- having observed x we replace the prior π by the conditional of θ given x ,
also called the posterior and denoted π(θ j x), for subsequent probability
statements about the unknown value of θ

- for the object of interest we have ψ = Ψ(θ) (taking possibly di¤erent
values for di¤erent θ values) which induces prior πΨ and posterior
πΨ(θ j x) via marginalization
- probability is playing a big role
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- what is probability?

- Kolmogorov�s axioms for probability: a probability model (Ω,F ,P) is
speci�ed by a set Ω, a σ-algebra F on Ω and a function P : F ! [0, 1]
satisfying P(Ω) = 1 and for any sequence A1,A2, . . . of mutually disjoint
elements of F , then P([∞

i=1Ai ) = ∑∞
i=1 P(Ai )

- this successfully "rigorized" the concept of probability so it can be
treated as a valid mathematical concept

- but this does not tell us what probability is or how to use it properly

- the following position is adopted here

No matter how probabilities are assigned (i.e. de�ning P), for
A 2 F , the interpretation of P(A) is that it represents our belief,
within the context of (Ω,F ,P), of an unknown value ω 2 Ω
being in A.
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Example urn containing 75 White balls and 25 Black balls, after a
thorough mixing a ball is drawn and its color observed

- What is the probability that a W ball is drawn? most would say this
probability is 3/4 and, provided the mixing and drawing was done in a
suitable way (more on this later), this seems reasonable

- Does this probability mean that if we repeated this many times that the
proportion of balls that are W will converge to 3/4? this limit argument
may well be true but it doesn�t have anything to do with the single draw
we are concerned with

- 3/4 measures our belief, on the [0, 1] scale with 0 and 1 representing
categorical beliefs, that the outcome on this single occurrence will be W

- sometimes a distinction is made between probabilities as long-run relative
frequencies and probabilities as degrees of belief but actually relative
frequencies just gives us one way to assign probabilities as degrees of
belief and there are other ways to make such assignments

- actually, the way of making the assignments is somewhat irrelevant, what
matters in statistical problems is whether or not the assigned probabilities
are contradicted by the observed data as nothing more can be said
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Example Bayes
- recall that we have the prior predictive probability measure M for x
before it is observed, namely, for A � X

M(A) =
Z
A
m(z) dz =

Z
A

Z
Θ

π(θ)fθ(z) dθ dz

=
Z

Θ
π(θ)

�Z
A
fθ(z) dz

�
dθ =

Z
Θ

π(θ)Pθ(A) dθ

- so M(A) represents our belief that the observed value of x will be in A

before we observe it

- but suppose that we are in the archetypal context so the actual "long
relative frequency" of this event is Pθtrue (A)

- obviously, in general, Pθtrue (A) 6= M(A)
- but θtrue is not known so we can�t quote Pθtrue (A) and M(A) re�ects the
uncertainty in the sampling process and the uncertainty due to θtrue being
unknown and so represents the appropriate degrees of belief
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- some will argue that, while x is "random" (or stochastic) θ is not and so
M(A) is not really a probability

- but we will subsequently argue that "randomness" has nothing to do
with probability per se but rather is concerned with attaining objectivity

Conditional Probability
- undoubtedly the most important concept in statistics

Principle of Conditional Probability
Suppose probability model (Ω,F ,P) holds and the fact that
ω 2 C , where C 2 F , becomes known. Then for A 2 F our
initial degrees of belief P(A) that ω 2 A is replaced by P(A jC ).

- P(A jC ) = P(A\ C )/P(C ) when P(C ) > 0
- at times paradoxes are presented and these are generally resolved by
being clear about how the information "ω 2 C" was generated
- this information must arise via an information generator Ξ : Ω onto! Ξ so
that C = Ξ�1fξ0g = fω : Ξ(ω) = ξ0g for some ξ0 2 Ξ and the value ξ0
is observed
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Example Bayes
- (θ, x) � π(θ)fθ(x) and x is observed so Ω = Θ�X and Ξ(θ, x) = x
Example Monte Hall Problem (Let�s Make A Deal game show)

- a contestant is presented with 3 doors I , II and III , asked to pick one and
picks I

- behind one door there is a desirable prize and behind the other two there
are goats

- contestant chooses door I and then Monte goes and opens door II ,
revealing a goat and asks the contestant if they would like to switch their
choice to door III

- should they switch?

- the set of possible outcomes is Ω = f(I , II , III ), (I , III , II ), (II , III , I )g
where the �rst two coordinates of ω 2 Ω indicate the doors with goats

- so A = f(II , III , I )g is the event the contestant wins by not switching
- the information provided "seems" to be C = f(I , II , III ), (II , III , I )g
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- using the Principle of Insu¢ cient Reason (when completely ignorant
about an unknown, assign equal probabilities to each possibility) then

P(A) = 1/3, P(C ) = 2/3, P(A\ C ) = P(A) = 1/3
P(A jC ) = P(A\ C )/P(C ) = (1/3)/(2/3) = 1/2

and there is no reason to switch

- but what is the information generator Ξ (restrict de�nition to case
contestant chooses I ) used by Monte?

Ξ(I , II , III ) = II , Ξ(I , III , II ) = III , Ξ(II , III , I ) =?

- if Ξ(II , III , I ) = II , then C = Ξ�1fIIg = f(I , II , III ), (II , III , I )g and
P(A jC ) = 1/2
- if Ξ(II , III , I ) = III , then C = Ξ�1fIIg = f(I , II , III )g and P(A jC ) = 0
- so the conditional probability is ambiguous, although we can say that if
Monte is using a deterministic rule, then we know P(Ac jC ) = 1/2 or
P(Ac jC ) = 1 so switching seems sensible

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/sta4522/STA4522.html ()The Measurement of Statistical Evidence Lecture 2 - part 1 2021 8 / 15



- alternatively, suppose in the indeterminate case Monte chooses which
door to open according to U where

P(U = II j contestant chose I ) = p
P(U = III j contestant chose I ) = 1� p

and p 2 [0, 1] is unknown to the contestant
- the information generator is now Ξ�(ω,U) (given in the book) and the
conditional probability that the contestant will win by not switching is
p/(1+ p) and this can be any number in [0, 1/2] so prob. of winning by
switching is > 1/2 and switching is always correct (increases belief in
winning the prize)

- often it is implicitly assumed (insu¢ cient reason) that p = 1/2, so prob.
of winning by switching is 2/3
- if we apply insu¢ cient reason and say p � U(0, 1) the probability of
winning by switching is 0.693

- if the contestant is told how the information was generated, then the
probability of winning by switching is clear, otherwise it is unde�ned, but it
can still be concluded that switching is appropriate.
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Probability via betting (de Finetti)
- you are a combination bettor/bookie who will buy/sell any gamble on
unknown ω 2 Ω at some price

- a gamble X is a function X : Ω ! R1 where a purchaser of X receives
X (ω) (in units of utility) when ω is revealed as the true value (negative
values correspond to losses)

- L(Ω) = set of all bounded gambles (a linear space)

- P : L(Ω)! R1 is a price function called a prevision

- you will buy or sell X for P(X ) with gain X (ω)� P(X ) or
P(X )� X (ω) respectively
- how is P determined?

Principle of Avoiding Sure Losses: A rational gambler will never
price gambles on the value of an unknown ω 2 Ω so that there
is a sure loss.

- of course, a rational gambler will accept a sure gain

- a combination of gambles that guarantees a loss for a gambler is known
as a Dutch book

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/sta4522/STA4522.html ()The Measurement of Statistical Evidence Lecture 2 - part 1 2021 10 / 15



Lemma The buying and selling price of X 2 L(Ω) must be the same.
Proof: Suppose a gambler would buy X for p1 and sell X for p2 where
p1 > p2. This combination results in the gain

(X � p1) + (p2 � X ) = p2 � p1 < 0

and the gambler has a sure loss. So by the principle of avoiding sure loss
we must have p1 � p2.

If p1 < p2, then for any ε > 0 the gambler will not pay p1 + ε for X
and will not sell X for p2 � ε. But this combination of gambles has gain

(X � p1 � ε) + (p2 � ε� X ) = p2 � p1 � 2ε

and this is positive when ε is small enough ensuring a sure gain. Since the
gambler is rational, we must have that p1 = p2.
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De�nition The prevision P is coherent if for every m, n 2 N and every
X1, . . . ,Xm ,Y1, , . . . ,Yn 2 L(Ω),

sup
ω2Ω

(
m

∑
i=1
(Xi (ω)� P(Xi ))�

n

∑
i=1
(Yi (ω)� P(Yi ))

)
� 0.

- a gambler with a coherent prevision will never have a sure loss on any
�nite combination of gambles

- the proofs of the following are in the text

Lemma The prevision P is coherent if and only if

sup
ω2Ω

n

∑
i=1

λi (Xi (ω)� P(Xi )) � 0 (*)

for all λ1, . . . ,λn 2 R1.
- P has the properties of an expectation operator and conversely.
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Theorem The prevision P is coherent if and only if
(i) P(X + Y ) = P(X ) + P(Y ) for every X ,Y 2 L(Ω),
(ii) P(λX ) = λP(X ) for every X 2 L(Ω),λ 2 R1,
(iii) P(X ) � 0 whenever X 2 L(Ω) satis�es X � 0,
(iv) P(1) = 1.

- so restricting P to indicator functions implies that P corresponds to a
�nitely additive probability measure.

Corollary A coherent prevision P gives a �nitely additive probability
measure on 2Ω. If u is paid for the gamble with payo¤ u + v whenever
ω 2 A and 0 otherwise, then P(A) = u/(u + v).
- a contingent gamble for B � Ω arises when a gambler buys or sells X
for P(X jB), with the purchaser receiving X (ω) when ω 2 B and, when
ω /2 B, the bet is called-o¤ with the price P(X jB) returned to the
purchaser with payo¤ IB (X � P(X jB))
- P(� jB) : L(Ω)! R1 is called a conditional prevision and it is required
that P(� jB) satisfy the Thm so that it is coherent.

Theorem If B = fB1, . . . ,Bmg is a �nite partition of Ω, then
P(X ) = ∑m

i=1 P(Bi )P(X jBi ).
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- some argue, based on the betting formulation for probability, that
Kolmogorov (iii) should be weakened to only require �nite additivity but
then we lose continuity of P

Example Uniform Probability on N

- If Ω = N, then de�ne P(A) = limn!∞#(A\ f1, . . . , ng)/n whenever
this limit exists

- it can be shown that P can be extended to a �nitely additive probability
measure on 2Ω

- clearly P(A) = 0 for any �nite set A while P(A) = 1/2 if A is the subset
of even natural numbers and so ∑∞

i=1 P(f2ig) = 0 6= 1/2
- so P is not countably additive

- also P(N j fig) � 1 and 1 = P(N) 6= ∑∞
i=1 P(N j fig)P(fig) = 0 so

no TTP
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- some argue, such as de Finetti, that the betting formulation is the
correct interpretation for probability and that if you don�t reason in
situations of uncertainty according to its precepts, then you are incoherent

- but this has similar consequences to insisting probability is only
concerned with long-run relative frequencies and the bettor/bookie
formulation is unrealistic

- everything works �ne in the �nite case, and so presents way of thinking
of probability assignments

- it requires utilities

- for the in�nite case it provides interesting math but the general results
are not relevant for statistics

- no notion of "randomness", is that a problem?
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